The methylotrophic yeast Pichia pastoris was used to express Drosophila melanogaster type 1beta serine/threonine phosphoprotein phosphatase catalytic subunit (PP1beta9C). A construct encoding PP1beta9C with a short NH(2)-terminal fusion including six histidine residues was introduced into the X-33 and KM71H strains of P. pastoris by homologous recombination. Recombinant protein was purified from cell free extracts 24 h after methanol induction. PP1beta9C was purified to a specific activity of 12,077 mU/mg by a three-step purification method comprising (NH(4))(2)SO(4)-ethanol precipitation followed by Ni(2+)-agarose affinity chromatography and Mono Q anion-exchange chromatography. This purification scheme yielded approximately 80 microg of active, soluble PP1beta9C per 1 L of culture. In contrast to recombinant PP1beta9C overexpressed in bacteria, which differs from native PP1c in several biochemical criteria including the requirement for divalent cations, sensitivity to vanadate, and p-nitrophenyl phosphate (pNPP) phosphatase activity, recombinant PP1beta9C produced in P. pastoris has native-like properties. P. pastoris thus provides a reliable and convenient system for the production of active, native-like recombinant PP1beta9C.
Animals
,Drosophila
,Escherichia coli
,Pichia
,Ethanol
,Okadaic Acid
,Recombinant Proteins
,Recombinant Fusion Proteins
,Chromatography, Ion Exchange
,Inhibitory Concentration 50
,Biochemistry
,Recombination, Genetic
,Protein Structure, Tertiary
,Time Factors
,Phosphoprotein Phosphatases
,Protein Phosphatase 1