Staphylococci are the most common cause of orthopaedic device-related infections (ODRIs), with Staphylococcus aureus responsible for a third or more of cases. This prospective clinical and laboratory study investigated the association of genomic and phenotypic variation with treatment outcomes in ODRI isolates. Eighty-six invasive S. aureus isolates were collected from patients with ODRI, and clinical outcome was assessed after a follow-up examination of 24 months. Each patient was then considered to have been 'cured' or 'not cured' based on predefined clinical criteria. Whole-genome sequencing and molecular characterization identified isolates belonging to globally circulating community- and hospital-acquired lineages. Most isolates were phenotypically susceptible to methicillin and lacked the staphylococcal cassette chromosome mec cassette [methicillin-susceptible S. aureus (MSSA); 94%] but contained several virulence genes, including toxins and biofilm genes. Whilst recognizing the role of the host immune response, we identified genetic variance, which could be associated with the infection severity or clinical outcome. Whilst this and several other studies reinforce the role antibiotic resistance [e.g. methicillin-resistant S. aureus (MRSA) infection] has on treatment failure, it is important not to overlook MSSA that can cause equally destructive infections and lead to poor patient outcomes.
Humans
,Biofilms
,Staphylococcus aureus
,Staphylococcal Infections
,Prosthesis-Related Infections
,Methicillin
,Virulence Factors
,Anti-Bacterial Agents
,Treatment Outcome
,Microbial Sensitivity Tests
,Prospective Studies
,Genome, Bacterial
,Adult
,Aged
,Middle Aged
,Female
,Male
,Methicillin-Resistant Staphylococcus aureus
,Whole Genome Sequencing