Bacteria solve the problem of crowding by moving slowly

Meacock O, Doostmohammadi A, Foster K, Yeomans J, Durham W

Bacteria commonly live attached to surfaces in dense collectives containing billions of cells1. While it is known that motility allows these groups to expand en masse into new territory2,3,4,5, how bacteria collectively move across surfaces under such tightly packed conditions remains poorly understood. Here we combine experiments, cell tracking and individual-based modelling to study the pathogen Pseudomonas aeruginosa as it collectively migrates across surfaces using grappling-hook-like pili3,6,7. We show that the fast-moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower-moving wild type at high cell densities. Using theory developed to study liquid crystals8,9,10,11,12,13, we demonstrate that this effect is mediated by the physics of topological defects, points where cells with different orientations meet one another. Our analyses reveal that when defects with topological charge +1/2 collide with one another, the fast-moving mutant cells rotate to point vertically and become trapped. By moving more slowly, wild-type cells avoid this trapping mechanism and generate collective behaviour that results in faster migration. In this way, the physics of liquid crystals explains how slow bacteria can outcompete faster cells in the race for new territory.